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Abstract—Berenger’s perfectly matched layer (PML) has been
found very effective in absorbing propagating waves, but it is inef-
fective in absorbing evanescent waves. Also, since the impedance
of PML does not match those of most of lossy media, the PML
technique can generally not be applied to terminate lossy media.
Derived from the modified Maxwell’s equations in the stretched
coordinates, the absorber, which we call the generalized perfectly
matched layer (GPML), presented in this letter cannot only
absorb propagating waves, but also accelerate the attenuation
of evanescent waves and perfectly match arbitrary lossy media.
Verifications of GPML are provided with numerical examples.

I. INTRODUCTION

ERENGER'’S perfectly matched layer (PML) boundary

condition has been successfully applied in the finite-
difference time-domain (FDTD) computation for open-region
electromagnetic scattering and radiation problems [1], [2].
Extensive numerical tests have demonstrated that the PML can
absorb outgoing propagating waves very effectively, resulting
in reduced requirements on computer memory space and CPU
times for many problems. It has also been shown that the PML
cannot effectively absorb evanescent waves [3], [4]. To see this
point clearly, consider a plane wave in a PML medium with
conductivities oy = o, = 0. Assume the angles between the
wave propagation direction and the = and the z axes are ¢ and
90°, respectively. Let ¢ be any field component of the plane
wave, then ¢ can be expressed as ((15) of [1])

)= woe]w(t—(m cos ptysinp/c)) ,—(gz cos p/ec)z N

For a propagating wave in the z direction, cos ¢ is a
real number and the term e~%= cos¢/ (ec)z contributes to the
attenuation of the field. On the other hand, if the variation of
the field in the = direction is of evanescent nature, cos ¢ will
be an imaginary number. In that case, the term e~ 7= <°° ¢/(ec)n
no longer decays in the z direction and the presence of the
PMIL does not add any additional attenuation to the wave.

Another limitation of the PML technique is that it can only
be applied to PML-PML interfaces [1]. A necessary condition
to be a PML medium is [1]

cle=c*/u. #))
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If the medium on either one side of the interface is not a
PML, significant reflection may occur and the corresponding
reflection coefficient can be found in (28) of [1]. This lim-
itation excludes the application of PML to many problems
involving lossy media, since (2) is not satisfied for most lossy
media.

A modification of PML is proposed in [3] for the ab-
sorption of evanescent waves, where media in the interior
computation domains are lossless. No reports have appeared,
to our knowledge, on remedies of the PML so that it can
be applied for general lossy media. This letter presents the
formulation of a modified PML medium, which we call the
generalized perfectly matched layer (GPML), by using the
modified Maxwell’s equations with the stretched coordinates.
It will be shown that the GPML can be used to terminate
interior regions of both lossless and lossy (nonPML) media
and effectively absorb both propagating and evanescent waves
simultaneously.

II. FORMULATION OF THE GENERALIZED
PERFECTLY MATCHED LAYER

In a medium of parameters (e, u, 0, "), where o and o*
may not be related by (2), the modified Maxwell’s equations
in the stretched coordinates can be expressed as
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where e;, h;, ¢ = x,y,2 are coordinate stretching variables.
Following the same procedure as that in [5] and imposing
the boundary condition for a plane wave solution at a two-
medium interface at (z = 0), one can find that the reflection
coefficients for both TE to z- and TM to z-polarized plane
waves are zero for any arbitrary values of o and ¢* if
€ = ep = ppey = ey = hy = hyen =
€2y — hlz = hZzaclm = I’blm, and Caap = th. Assume
the medium on one side of the interface is in the interior
region and (eiq, €1y, €1z, Rz, R1y, h12) = (1,1,1,1,1,1).
Then, the medium on the other side of the interface which
acts as an absorber should have (e2q, €2y, €22, haz, hay, haz) =
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(s2,1,1,8.,1,1). s, is the ratio of es, and ej,, and can be
chosen as the following form:

52(0) = saa) 1 -

With s, chosen as (6), the plane wave solution in the GPML
absorber can be derived to be
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where k? = w?u'e’; and k cos ¢ = kL — jkZ. The
absorber thus constructed can absorb both propagating and
evanescent waves. If the plane wave is mainly a propagating
wave, i.e., k., is dominant, the amplitude of the wave decays
as e~ (Feo2/we)s02 which is similar to that in the PML. If
the plane wave is evanescent in the x direction, ie., k7 is
dominant, the wave decays mainly as e‘kgsﬂﬂ whereas in
the original PML, the evanescent wave decays as e kae, By
choosing sg > 1, the attenuation of the evanescent wave is
accelerated.

III. IMPLEMENTATION OF THE GENERALIZED
PERFECTLY MATCHED LAYER

For the convenience of illustration, consider the TM to z
wave. The same procedure can be applied to TE to = and
arbitrary 3-D cases. The governing field equations in GPML
can be derived to the following forms:
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where ¢} = o,p/€,v,,, and ¢, are two auxiliary variables
to facilitate the implementation. When so = 1, and ¢ and ¢*
equal to zero, (8)—(11) become the equations for the original
PML [1]. The discretization of (8)—(13) can be realized by the
standard central difference in space and time.

IV. SELECTION OF so(z) AND o, (x)

Although the GPML theoretically perfectly matches any
lossless and lossy interior media, so(x) and o,(z) have
to change gradually and continuously to avoid significant
numerical reflections as a wave travels through the absorber.
We found following patterns of sg(x) and o, (2) can generally
result in small numerical reflections

so(z) =1+ sm<§>2

og(z) = sin® (%)

(14)

(15)
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Fig. 1. Cross-section of a parallel-plate waveguide (¢ = 40 mm).
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Fig. 2. Reflection coefficient of 16-cell PML and GPML for Ry = 104,

where s, is a coefficient and & is the absorber thickness. As
been discussed before, a propagating wave attenuates in GPML
in a rate proportional to e~7=(®)*0(@) The selection of o, (x)
and so(z) in (14) and (15) makes the variation of o, (x)so(x)
a parabolic function almost uniformly in the entire region of
the GPML absorber.

The wavelength of an incident wave shrinks as the wave
penetrates into the absorber. The numerical reflection becomes
significant if the spatial resolution of the wave is too small.
We found that s,, needs to be bounded by the condition
A/S$m >2 — 3 dh, where dh is the FDTD space step and A
is the wavelength in the interior medium terminated by the
GPML.

V. NUMERICAL EXAMPLES

Consider a parallel-plate waveguide filled with free space,
as shown in Fig. 1. The separation between the two metal
plates is 40 mm. The FDTD space step is chosen to be 1 mm.
The TM; mode of the waveguide has a cutoff frequency at
3.75 GHz. The reflection coefficients of a 16-cell PML and
a 16-cell GPML for a TM; incident wave are shown in Fig.
2. As can be seen from Fig. 2, the PML is only effective
in the frequency range above the cutoff frequency, while the
GPML cannot only absorb the propagating wave, but also add
a substantial damping to the evanescent wave. In this test, the
theoretical reflection coefficients Ry for a normally incident
plane wave is set to 10~ for both PML and GPML media.

Consider the waveguide shown in Fig. 1 again, but this
time the waveguide is filled with a lossy medium of o = 0.1
S/m, and ¢* = 0. Since the lossy medium is not a PML, an
absorber with conductive losses ¢, and ¢ only, i.e., without
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Fig. 3. Reflection coefficient of TM; mode for a parallel plate waveguide
filled with a lossy material (¢ = 0.1 S/m,¢* = 0). Rg = 10™%. (Solid
line is obtained with GPML.)

the auxiliary variables defined in (12) and (13), cannot absorb
effectively. Fig. 3 shows the reflection coefficients of two
absorbers of different selections of o, and o}, without the
auxiliary variables 1., and ¢,. On the other hand, very good
absorption can be achieved by the GPML implemented with
(8)-(13).

Applications of the GPML have also been carried out for
modeling wave propagation along microstrip and strip lines,
as well as in layered lossy media. Similar observations have
been obtained from these applications as from those described
above.

V1. CONCLUSION

The generalized perfectly matched layer, which is an ex-
tension of Berenger’s perfectly matched layer, is presented
in this letter. The new absorber (GPML) can perfectly match
nonPML lossy media and effectively absorb both propagating
and evanescent waves.
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